Generalizations of Bohr's inequality in HilbertC*-modules
نویسندگان
چکیده
منابع مشابه
Generalizations of Bohr’s Inequality in Hilbert C∗-modules
We present a new operator equality in the framework of Hilbert C∗-modules. As a consequence, we get an extension of the Euler–Lagrange type identity in the setting of Hilbert bundles as well as several generalized operator Bohr’s inequalities due to O. Hirzallah, W.-S. Cheung–J.E. Pečarić and F. Zhang.
متن کاملGENERALIZATIONS OF delta-LIFTING MODULES
In this paper we introduce the notions of G∗L-module and G∗L-module whichare two proper generalizations of δ-lifting modules. We give some characteriza tions and properties of these modules. We show that a G∗L-module decomposesinto a semisimple submodule M1 and a submodule M2 of M such that every non-zero submodule of M2 contains a non-zero δ-cosingular submodule.
متن کاملGeneralizations of Hölder’s Inequality
Some generalized Hölder’s inequalities for positive as well as negative exponents are obtained. 2000 Mathematics Subject Classification. 26D07, 26D15.
متن کاملGeneralizations of Popoviciu’s inequality
We establish a general criterion for inequalities of the kind convex combination of f (x1) , f (x2) , ..., f (xn) and f (some weighted mean of x1, x2, ..., xn) ≥ convex combination of f (some other weighted means of x1, x2, ..., xn) , where f is a convex function on an interval I ⊆ R containing the reals x1, x2, ..., xn, to hold. Here, the left hand side contains only one weighted mean, while t...
متن کاملgeneralizations of delta-lifting modules
in this paper we introduce the notions of g∗l-module and g∗l-module whichare two proper generalizations of δ-lifting modules. we give some characteriza tions and properties of these modules. we show that a g∗l-module decomposesinto a semisimple submodule m1 and a submodule m2 of m such that every non-zero submodule of m2 contains a non-zero δ-cosingular submodule.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear and Multilinear Algebra
سال: 2010
ISSN: 0308-1087,1563-5139
DOI: 10.1080/03081080802563740